ФЭНДОМ



Машинный эксперимент с моделью системы S при ее исследовании и проектировании проводится с целью получения информации о характеристиках процесса функционирования рассматриваемого объекта. Эта информация может быть получена как для анализа характеристик, так и для их оптимизации при заданных ограничениях, т. е. для синтеза структуры, алгоритмов и параметров системы SВ зависимости от поставленных целей моделирования системы S на ЭВМ имеются различные подходы к организации имитационного эксперимента с машинной моделью Мм.

Основная задача планирования машинных экспериментов — получение необходимой информации об исследуемой системе S' при ограничениях на ресурсы (затраты машинного времени, памяти и т. п.). К числу частных задач, решаемых при планировании машинных экспериментов, относятся задачи уменьшения затрат машинного времени на моделирование, увеличения точности и достоверности результатов моделирования, проверки адекватности модели и т. д.

Эффективность машинных экспериментов с моделями Мм существенно зависит от выбора плана эксперимента, так как именно план определяет объем и порядок проведения вычислений на ЭВМ, приемы накопления и статистической обработки результатов моделирования системы S.

Поэтому основная задача планирования машинных экспериментов с моделью Мм формулируется следующим образом: необходимо получить информацию об объекте моделирования, заданном в виде моделирующего алгоритма (программы), при минимальных или ограниченных затратах машинных ресурсов на реализацию процесса моделирования.

Таким образом, при машинном моделировании рационально планировать и проектировать не только саму модель Мм системы Sно и процесс ее использования, т. е. проведение с ней экспериментов с использованием инструментальной ЭВМ.

Применяя системный подход к проблеме планирования машинных экспериментов с моделями систем, можно выделить две составляющие планирования: стратегическое и тактическое планирование.

Стратегическое планирование ставит своей целью решение задачи получения необходимой информации о системеS' с помощью модели Мм реализованной на ЭВМ, с учетом ограничений на ресурсы. По своей сути стратегическое планирование аналогично внешнему проектированию при создании системы S, только здесь в качестве объекта выступает процесс моделирования системы.

При стратегическом планировании машинных экспериментов с моделями систем возникает целый ряд проблем, взаимно связанных как с особенностями функционирования моделируемого объекта (системы S), так и с особенностями машинной реализации модели Мм и обработки результатов эксперимента. В первую очередь к таким относятся проблемы построения плана машинного эксперимента; наличия большого количества факторов; многокомпонентной функции реакции; стохастической сходимости результатов машинного эксперимента; ограниченности машинных ресурсов на проведение эксперимента.

При построении плана эксперимента необходимо помнить, что целями проведения машинных экспериментов с моделью Мм системы S являются либо получение зависимости реакции от факторов для выявления особенностей изучаемого процесса функционирования системы Sлибо нахождение такой комбинации значений факторов, которая обеспечивает экстремальное значение реакции.

проблема стратегического планирования машинных экспериментов — наличие большого количества факторов. Это одна из основных проблем реализации имитационных моделей на ЭВМ, так как известно, что в факторном анализе количество комбинаций факторов равно произведению числа значений всех факторов эксперимента. Если факторы $ x_i \ i=1, ..., k $, являются количественными, а реакция у связана с факторами некоторой функцией, то в качестве метода обработки результатов эксперимента может быть выбран регрессионный анализ. Когда при моделировании требуется полный факторный анализ, то проблема большого количества факторов может не иметь решения. Достоинством полных факторных планов является то, что они дают возможность отобразить всю поверхность реакции системы, если количество факторов невелико. Эффективность этого метода существенно зависит от природы поверхности реакции.

Следующей проблемой стратегического планирования машинных экспериментов является многокомпонентная функция реакции. В имитационном эксперименте с вариантами модели системы S' на этапе ее проектирования часто возникает задача, связанная с необходимостью изучения большого числа переменных реакции. Эту трудность в ряде случаев можно обойти, рассматривая имитационный эксперимент с моделью по определению многих реакций как несколько имитационных экспериментов, в каждом из которых исследуется (наблюдается) только одна реакция.

Существенное место при планировании экспериментов с имитационными моделями, реализуемыми методом статистического моделирования на ЭВМ, занимает проблема стохастической сходимости результатов машинного эксперимента. Эта проблема возникает вследствие того, что целью проведения конкретного машинного эксперимента при исследовании и проектировании системы S' является получение на ЭВМ количественных характеристик процесса функционирования системы S' с помощью машинной модели МмВ качестве таких характеристик наиболее часто выступают средние некоторых распределений, для оценки которых применяют выборочные средние, найденные путем многократных прогонов модели на ЭВМ, причем чем больше выборка, тем больше вероятность того, что выборочные средние приближаются к средним распределений. Сходимость выборочных средних с ростом объема выборки называется стохастической сходимостью.

Применяя системный подход к проблеме стратегического планирования машинных экспериментов, можно выделить следующие этапы:

1) построение структурной модели;

2) построение функциональной модели.

При этом структурная модель выбирается исходя из того, что должно быть сделано, а функциональная — из того, что может быть сделано.

Структурная модель плана эксперимента характеризуется числом факторов и числом уровней для каждого фактора. Число элементов эксперимента где k — число факторов эксперимента; q — число уровней i-го фактора, $ i=1, ..., k $При этом под элементом понимается структурный блок эксперимента, определяемый как простейший эксперимент в случае одного фактора и одного уровня.

Функциональная модель плана эксперимента определяет количество элементов структурной модели Nф, т. е. необходимое число различных информационных точек. При этом функциональная модель может быть полной и неполной.

Функциональная модель называется полной, если в оценке реакции участвуют все элементы, т. е. Nф = Nси неполной, если число реакций меньше числа элементов, т. е. Nф < NсОсновная цель построения функциональной модели — нахождение компромисса между необходимыми действиями при машинном эксперименте (исходя из структурной модели) и ограниченными ресурсами на решение задачи методом моделирования.

Таким образом, использование при стратегическом планировании машинных экспериментов с Мм структурных и функциональных моделей плана позволяет решить вопрос о практической реализуемости модели на ЭВМ исходя из допустимых затрат ресурсов на моделирование системы S.